

Status of technologies and safety standards for Ammonia fueled ships

ACS Seminar 2022

Korean Register

GreenShip Technology Team
Park Junesung

- 1. Issue Decarbonation
- 2. Alternative Fuels
- 3. Ammonia as a fuel

1. Issue - Decarbonation

IMO GHG Strategy

IMO GHG Strategy

Phase GHG emissions of ships out ASAP in this century

TARGET >>>

- 1. Carbon Intensity to decline
- Further Phases of EEDI for New Ships
- 2. Carbon Intensity to decline
- (tCO2/ton·mile) 40% by 2030 and 70% by 2050 compared to 2008
- 3. GHG emissions to peak and decline
- Peak GHG emissions as soon as possible
- (Total annual emissions) 50% by 2050 compared to 2008

Tech. M for Ex. Ship → EEXI Operational Measure → CII

2018-2023 Short-term measures

- Improvement of **EEDI and SEEMP**
- Develop technical and operational energy efficiency measures for both new and existing ships with threestep approach
- Existing Fleet Improvement Programme
- Speed optimization and reduction
- Measures for methane and VOCs
- National Action Plans, Technical cooperation and capacity-building, Port development (AMP etc), R&D activities, Incentives for first movers, Lifecycle guidelines for fuels, GHG study

2023-2030 Mid-term measures

- Programme for alternative fuels
- Operational energy efficiency measures for both new and existing ships
- Emission Reduction Mechanism (MBM)
- Technical cooperation and capacity-building, Feedback mechanism

Beyond 2030 Long-term measures

- Zero-carbon or fossil-free fuels
- Emission Reduction Mechanism

IMO GHG Strategy

Source: IMO action to reduce greenhouse gas emissions from international shipping, IMO

2. Alternative Fuels

Low-carbon · Carbon-free fuels / Carbon Neutrality

LNG / LPG / Methanol

LNG - methane slip regulation?

✓ Methane GWP: 28 X ~ 84 X

- HP DF engine: 0.1~0.3 g/kWh

- LP DF engine: 1.6~2.4 g/kWh

▶ LPG Fueled Ship = LPG Carrier ??

- ✓ ME-LGIP 30 ships contracted ('19~'20)
- Possibility of expansion such as passenger ship,
 Costal ship, OSV, etc.

Methanol = Carbon Neutral ??

- ✓ Maersk 16,000TEU 12 ships
- ✓ "carbon neutral methanol"
- √ bio-methanol & e-Methanol

iCER: X-DF 2.0(WinGD)

EGR : MEGA engine(MAN ES)

Fuels & Well to Wake

IMO GHG regulations

Tank to wake Vs. Well to wake(or propeller) ?

Carbon Neutral Fuel!

Bio / Synthetic - Oil / Gas

- Diesel Oil: MSC, CMA CGM, Maersk, Hapag-Lloyd
 - ✓ Common Blending fuel: B20(80% LSFO & 20% biodiesel)
 - Supply stability: Supply and demand competition with other industries
 - price competitiveness and stability
 - Life-cycle GHG (100-year GWP)
- ▶ Bio-methane: CMA CGM

Fuel	Price 30/1/2020 (USD per metric tonne)
IFO380	295 ¹
VLSFO	475.5 ¹
MGO	492 ¹
UCOME	1215 ²
TME	1190 ²
SME	976 ³
FAME	740 ³

Advanced biofuel & Waste biomass

- ✓ Waste + residual agricultural products :12,000ton → 1,400TEU(Rott.-St.PT.)
- ✓ 67% CO2 \(\psi_\), well-to-wake
- Synthetic NG (SNG) MAN ES
 - ✓ Renewable energy (wind, solar)
 - ✓ Wes Amelie ← LNG & SNG

(Source: www.man-es.com, Power-to-X: Key technology for the energy transition, 2020)

Characteristics of Ammonia as a fuel

- ✓ Easy to store in liquid state (-33°C or 20°C, 7.5 bar), but...
 - Abt. 4 times storage space required compared to existing MGO, Toxicity + Corrosion
 - Material: Cooper & Zinc X, Stress Corrosion Cracking
- ✓ Fire & Explosion \downarrow , Fuel Nox \rightarrow SCR / EGR
- ✓ Global Production → Transport Network

- Ammonia engine development in progress (MAN / Wartsilla vs HHI / STX-E)
- Ammonia needs to be linked to the value chain of the hydrogen industry
 - ✓ Green/Blue Hydrogen → Ammonia production
 - ✓ Use of ammonia as a means of transporting hydrogen
 - → Close to ammonia economy

Hydrogen! Incomplete hero

- Ultimate fuel / Technical hurdle / Economic security
 - ✓ Needs to overcome technical difficulties
 - Fuel storage: liquid/gas condition, H₂ damage. (20k, high pressure, H₂ metal penetration).
 - Challenges for shipbuilding industry: H₂ Fuel/Cargo Containment system

(Class NK hydrogen carrier: Small)

(Large liquefied hydrogen carrier)

(Hydrogen fueled ship)

- \checkmark Engine (30~45 £/kW) vs Fuel Cell (100 £/kW)
- ✓ Need government policy support to secure economy (ex.H₂ value chain)

Review of alternative fuels

A review of applicability / affordability / eco-friendliness

- Limitations & Trade-off
 - ✓ Limited ship space and fuel load (volume/weight/energy density)
 - ✓ Reduction of GHG (Environment) vs Cargo Loss (Economy)
- Ost of fuel Life cycles (Production, Transport, Storage, Infra., Bunkering)
 - ✓ High cost of H₂ transportation and Synthetic fuel production
 - ✓ Fuel Cost depending on the method of production and transportation
 - ✓ Need to analyze costs according to MBM, Gov. Subsidy etc.
- Total GHG of fuel Life cycles (Well to wake)
 - \checkmark CO₂ emission, including CH₄, N₂O, etc.

(I_NG)

(Me-OH)

(Ammonia)

Supply & Demand

- Fuel Production → Supply(Port) → Demand and Price stability
 - ✓ Expansion of production /transportation Infra. is required to secure alternative fuel economy
 - Ammonia, linked to H2 economy: Green ammonia
 - Ammonia Carrier → Ammonia Fueled Ship

(Source: The Royal Society, Ammonia: zero-carbon fertiliser, fuel and energy store, 2020)

(Source: Riviera webinar, LPG; the green pathway demystified, Nov. 2020)

	2025-2030		2040-2050	
	USD/MT	USD/GJ	USD/MT	USD/GJ
VLSFO (<0.5%S)	500-600	12.5-15	500-600	12.5-15
Conventional Ammonia	250	13.5	250	13.5
Blue Ammonia	350-400	18.8-21.5	350-400	18.8-21.5
Green Ammonia	400-850	21.5-45.7	275-450	14.8-24.1
Hybrid Green Ammonia	300-400	16.1-21.5	250	13.5

Uncertainty of Alternative Fuel

- Note that the second Head Holds \rightarrow LNG → Ammonia → H₂
 - ✓ Difficult to predict due to many issues such as environment, price, supply, and safety

3. Ammonia as a Fuel

R&D in KOREA, Safety and requirement

Ammonia Fueled Ship

R&D - LFSS in KOREA

Korean Government Launches Development Support Project Rotor sail

for Green Ship Technologies in 2022

- Liquid Fuel Supply System
- Hybrid-Propulsion System
- ✓ Ammonia Internal Combustion Engine

- R&D → Design → Prototype → Test & Demonstration → Sea Trial
 → Commercialization
 - ✓ KR`s advanced support from technology development to commercialization

Status: Code Development

Proposal for developing provision

- MSC 104/15/9 (Japan, Singapore, ICS, INTERCARGO)
 - Development of non-mandatory guidelines
- MSC 104/15/10(Japan) : HAZID of Ammonia fueled Ship
- Concept ship of DF 80K Bulk Carrier
- Toxicity of Leakage Gas → safety measures for crew

Direction of developing provision

- •MSC 104/15/30(Japan)
 - Combustion Characteristics
 - : Ignition, Flammable limit, Burning velocity
- Low risk of fire/explosion
- More toxic accidents than fires
- Proposal of direction of Technical Provision (based on IGF, focusing on toxicity)

Status

- CCC 7/3/8 (EU 27th member states), CCC 7/3/10 (CESA)
- to include Ammonia fuel ship's provision in CG work program
- CCC 7 WG Report (CCC 7/WP.3)
- plan on Provision of ammonia fueled ship included finally
- Ammonia-CG Round 3 finished ('22.6)
- Collecting Info. on toxicity. possible technical measure

Fuel supply system (for MAN ES, ME-LGIA)

Liquid Fuel Supply System for Diesel cycle Engine

Toxicity Issues (SGMF Workshop)

- √ Thresholds for Toxicity: to Set concentration limits and toxic hazard zones
 - Exposure limit
 - Considering the amount of inhalation (concentration X exposure time) that affects the human body
 There are many uncoordinated criteria for land ammonia.
 - Considering 30 ppm as the concentration setting for toxic hazard zones
 - Toxic hazard zone
 - · Gas safety Space in ship: Machinery space, Fuel Preparation room, Bunkering station
 - Establishing Toxic hazard zones through CFD based on 30 ppm

Characteristics of ammonia to be considered

- Identified as smell even at a small concentration
- Difficult to be identified as smell when exposed to a small concentration for a long time.
- Lighter than air, but can sink to the floor in response to ambient humidity.
- Soluble in water → Wet-type ammonia capture system
- ✓ Discharge of aqueous ammonia solution
 - Marine discharge of aqueous ammonia solution is considered to be toxic -> neutralization
 needed before discharge -> Discharge limit is required

Class Guideline or Rule for Ammonia Fueled Ship

No.	Class	Title		
1	KR	Guidelines for Ships Using Ammonia as Fuels		
2	BV	NR 671 Ammonia fuelled ship		
3	DNV	DNV Rules for classification: Ships, Pt 6, Ch 2, Sect 14, Gas fuelled ammonia		
4	ABS	Guide for Ammonia Fuelled Vessels 2021		
5	NK	Guidelines for Ships Using Alternative Fuels (Edition1.1)		
6	RINA	RINA Rules for the Classification of Ships		

Ammonia discharge to ambient - Class Guidelines

	IGF	Class guideline			
	(LNG)	KR	BV	ABS	DNV
Normal	Through Vent mast	Minimizing ammonia gas/	① 30ppm by using capture Sys.	Prohibiting ammonia gas	Prohibiting ammonia gas/ 30ppm at vent mast
Emergency		Prohibiting ammonia liquid	① / ② Dilution sys.	Minimizing ammonia gas	-

RES Common Requirements

IGF Code

Fire Safety : Considering the flammability

Gas leakage and accumulation

- Double-walled pipe
- Ventilation, Gas detection, DBBV

Fire protection

- Explosion-protected Elec.
 Equipment
- Shutdown of Elec. Equipment
- Classification of hazardous areas
- Distance between gas leak source and safety zone

Prevention of fire spread

- A-60 insulation & cofferdam
- Fire detection & extinguishing system

Additional requirement for NH₃ fueled ship

: considering toxicity, corrosiveness and other properties

- Protective Gear, Eye washer
- Limitation of the accumulated Ammonia gas
 - More Ventilation
 - Permissible concentration (25ppm, 300ppm)

- Materials limited : Tank, pipe etc.
- Welding heat treatment
- Water content of ammonia

- Prohibiting ammonia gas/liquid from venting
- Considering phase changes in the system

Discussion required for future

- Ammonia gas released
 - Ventilation (↑ or ↓ ?)
 - Gas Concentration for safety measures
 - Gas removal system on-site (ex. Water spray etc.)
- Definition of hazardous (toxic) areas
 - Reference concentration (ex. toxic zone 0...2 ?)
 - Analysis of dispersion, and standard method or scheme
 - Ship arrangement (Vent Mast, Vent outlet, Bunkering manifold, etc.)
- Ventilation to ambient
 - Ammonia processing system (scrubber?)
 - Permissible Ammonia concentration (25ppm or 300 ppm ?)
- Requirements for fire safety
 - Separation of space or room (A-60 and/or Cofferdam ?)
 - Are there any mitigation requirements compared to LNG fueled ships?

Thank you for your attention

ACS Website:

http://www.asiancs.org